Artificial Intelligence

Artificial intelligence (AI) is becoming a crucial component of healthcare to help augment physicians and make them more efficient. In medical imaging, it is helping radiologists more efficiently manage PACS worklists, enable structured reporting, auto detect injuries and diseases, and to pull in relevant prior exams and patient data. In cardiology, AI is helping automate tasks and measurements on imaging and in reporting systems, guides novice echo users to improve imaging and accuracy, and can risk stratify patients. AI includes deep learning algorithms, machine learning, computer-aided detection (CAD) systems, and convolutional neural networks. 

Thumbnail

Building Foundations to Build Better Care

Sponsored by Pure Storage

It’s all about the data. We’ve been saying this for years. We can choose to look at this in one of two ways. It’s either a constant truism or it actually evolves and gains mass over time. In the age of artificial intelligence, it is both. 

Thumbnail

Will ‘Smart’ Solutions Really Transform Cardiology?

Sponsored by Pure Storage

Smart technologies are often touted as the answer to some of cardiology’s greatest challenges in patient care and practice. But where does hyperbole end and reality begin with artificial intelligence, machine learning and deep learning?

Thumbnail

Matching Machine Learning and Medical Imaging: Predictions for 2019

Sponsored by Pure Storage

Developments in vastly scalable IT infrastructure will soon increase the rate at which machine learning systems gain the capacity to transform the field of medical imaging across clinical, operational and business domains. Moreover, if the pace seems to be picking up, that’s because data management on a massive scale has advanced exponentially over just the past several years. 

Thumbnail

NYU’s Daniel Sodickson on AI, Facebook and Why Faster MR Scans Could Improve Healthcare

Sponsored by Pure Storage

A new project is seeking to make MRI scans up to 10 times faster by capturing less data. NYU’s Center for Advanced Imaging Innovation and Research (CAI2R) is working with the Facebook Artificial Intelligence Research group to “train artificial neural networks to recognize the underlying structure of the images to fill in views omitted from the accelerated scan.”

Thumbnail

Machine Learning 101: Simplifying It One Term at a Time

Sponsored by Pure Storage

Machine learning is one of the hottest topics in radiology and all of healthcare, but reading the latest and greatest ML research can be difficult, even for experienced medical professionals. A new analysis written by a team at Northern Ireland’s Belfast City Hospital and published in the American Journal of Roentgenology was written with that very problem in mind.

Thumbnail

Intelligence & Insight: The Latest News in AI and Machine Learning

Sponsored by Pure Storage

A compilation of the latest news in AI and machine learning

Thumbnail

Leveraging Technology, Data and Patient Care: How Geisinger Is Interjecting Insight & Action

Sponsored by Pure Storage

As an integrated health-delivery network comprising 13 hospital campuses, two research centers and a health plan with more than half a million subscribers sitting atop the biggest biobank with whole exome (DNA) sequence data in existence, Pennsylvania’s Geisinger Health System is one of the best-positioned institutions in the U.S. to explore the possibilities and initial successes of AI in healthcare. The institution is bringing complex algorithmic concepts to everyday patient care and showing others the path forward.

Thumbnail

Embracing AI: Why Now Is the Time for Medical Imaging

Sponsored by Pure Storage

Artificial and augmented intelligence are driving the future of medical imaging. Tectonic is the only way to describe the trend. And medical imaging is at the right place at the right time. Imaging stands to get better, stronger, faster and more efficient thanks to artificial intelligence, including machine learning, deep learning, convolutional neural networks and natural language processing. So why is medical imaging ripe for AI? Check out the opportunities and hear what experts have to say—and see what you should be doing now if you haven’t already started.